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Abstract: A vertex-colored graph G is rainbow vertex-connected if any two vertices are connected by a path whose
internal vertices have distinct colors. The rainbow vertex-connection number of a connected graph G, denoted
by rvc(G), is the smallest number of colors that are needed in order to make G rainbow vertex-connected. A
path P connecting two vertices u and v in a total-colored graph G is called a rainbow total-path between u and
v if all elements in V (P ) ∪ E(P ), except for u and v, are assigned distinct colors. The total-colored graph G is
rainbow total-connected if it has a rainbow total-path between every two vertices. The rainbow total-connection
number, denoted by rtc(G), of a graph G is the minimum colors such that G is rainbow total-connected. In this
paper, we will obtain some results for these two variants of rainbow connection. For rainbow vertex-connection,
we will first investigate the rainbow vertex-connection number of a graph according to some structural conditions
of its complementary graph G. Next, we will investigate graphs with large rainbow vertex-connection numbers.
We then derive a sharp upper bound for rainbow vertex-connection numbers of line graphs. For rainbow total-
connection, we will determine the precise values for rainbow total-connection numbers of some special graph
classes, including complete graphs, trees, cycles and wheels.

Key–Words: vertex-coloring, total-coloring, rainbow vertex-connection number, rainbow total-connection number,
rainbow connection number, complementary graph

1 Introduction

The graphs considered in this paper are finite,
undirected and simple graphs. We follow the nota-
tions of Bondy and Murty [1], unless otherwise stated.
For a graph G, let V (G), E(G), n(G), m(G) and G,
respectively, be the set of vertices, the set of edges, the
order, the size and the complement of G.

Let G be a nontrivial connected graph on which
an edge-coloring c : E(G) → {1, 2, · · · , n}, n ∈
N, is defined, where adjacent edges may be colored
the same. A path is rainbow if no two edges of it
are colored the same. An edge-colored graph G is
rainbow connected if any two vertices are connected
by a rainbow path. Clearly, if a graph is rainbow
connected, it must be connected, whereas any con-
nected graph has a trivial edge-coloring that makes it
rainbow connected; just color each edge with a dis-
tinct color. Thus, in [5] Chartrand et al. defined the
rainbow connection number of a connected graph
G, denoted by rc(G), as the smallest number of col-
ors that are needed in order to make G rainbow con-
nected. Clearly, rc(G) ≥ diam(G) where diam(G)
denotes the diameter of G.

The rainbow connection number is not only a

natural combinatorial measure, but also has applica-
tions to the secure transfer of classified information
between agencies. In addition, the rainbow connec-
tion number can also be motivated by its interesting
interpretation in the area of networking(see [4]): Sup-
pose that G represents a network (e.g., a cellular net-
work). We wish to route messages between any two
vertices in a pipeline, and require that each link on the
route between the vertices (namely, each edge on the
path) is assigned a distinct channel (e.g. a distinct fre-
quency). Clearly, we want to minimize the number
of distinct channels that we use in our network. This
number is precisely rc(G). There are more and more
researchers investigating this new topic. The readers
can see [16] for a survey and [17] for a new mono-
graph on it.

The concept of rainbow connection has several
interesting variants, one of them is rainbow vertex-
connection which was first proposed by Krivelevich
and Yuster in [11]. A vertex-colored graph G is rain-
bow vertex-connected if two vertices are connected
by a path whose internal vertices have distinct col-
ors. The rainbow vertex-connection number of a con-
nected graph G, denoted by rvc(G), is the smallest
number of colors that are needed in order to make
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G rainbow vertex-connected. Notice that rvc(G) ≥
diam(G) − 1 with equality if the diameter is 1 or
2. Note that rvc(G) may be much smaller than
rc(G) for some graph G. For example, we consider
the star graph K1,n, we have rvc(K1,n) = 1 while
rc(K1,n) = n. rvc(G) may also be much larger than
rc(G) for some graph G. For example(see [11]), take
n vertex-disjoint triangles and, by designating a ver-
tex from each of them, add a complete graph on the
designated vertices. This graph has n cut vertices and
hence rvc(G) ≥ n. In fact, rvc(G) = n by color-
ing only the cut vertices with distinct colors. On the
other hand, it is not difficult to see that rc(G) ≤ 4.
Just color the edges of Kn with color 1, and color the
edges of each triangle with the colors 2, 3, 4.

Recently, Uchizawa, Aoki, Ito, Suzuki, and Zhou
[19] introduced a new variant of rainbow connec-
tion, named rainbow total-connection. For a graph
G = (V,E), let c : V ∪ E −→ C be a total-coloring
of G which is not necessarily proper. A path P in
G connecting two vertices u and v in V is called a
rainbow total-path between u and v if all elements
in V (P )∪E(P ), except for u and v, are assigned dis-
tinct colors by c. Similarly as in the vertex-coloring
version, we do not care about the colors assigned to
the end-vertices u and v of P . The total-colored graph
G is rainbow total-connected if G has a rainbow
total-path between every two vertices in V . Now we
define the rainbow total-connection number, de-
noted by rtc(G), of a graph G as the minimum colors
such that G is rainbow total-connected.

For a set S, let |S| denote the cardinality of S.
A k-subset of a set S is a subset of S whose car-
dinality is k where k ≤ |S|. An inner vertex of a
graph G is a vertex of degree at least 2 in G and we
use V2 to denote the set of inner vertices of G and
let n2 = |V2|. We use Vc to denote the set of cut
vertices of the graph G and let nc = |Vc|. Clearly,
Vc ⊆ V2 and nc ≤ n2. For a subset X of V (G),
we use G[X] to denote the induced subgraph of X in
G. For U ⊆ V (G), we denote G\U the subgraph by
deleting the vertices of U and its adjacent edges from
G. If E(W ) is the edge subset of G, then G\E(W )
denote the subgraph by deleting the edges of E(W ).
For any two vertex sets U and V , let E[U, V ] denote
the set of edges between U and V in G. The distance
between two vertices u and v in a connected graph
G, denoted by distG(u, v), is the length of a shortest
path between them in G. The eccentricity of a ver-
tex x, denoted by eccG(x), in a connected graph G
is defined as eccG(x) = maxv∈G{distG(x, v)}. For
a graph G, we define the degree-sum as σk(G) =
min{d(u1) + d(u2) + · · · + d(uk)| u1, u2, . . . , uk ∈
V (G), uiuj ̸∈ E(G), i ̸= j, i, j ∈ {1, · · · , k}}.

We first list some recent results on these two vari-

ants of rainbow connection, then we will introduce
our results. The complexity of determining rainbow
vertex-connection of a given graph was first settled by
Chen, Li and Shi [7]. For the introduction of com-
plexity theory, see [10]. They derived the following
two results.

Theorem 1 [7] Given a graph G, deciding if
rvc(G) = 2 is NP -complete. In particular, comput-
ing rvc(G) is NP -hard.

Theorem 2 [7] The following problem is NP -
complete: given a vertex-colored graph G, check
whether the given coloring makes G rainbow vertex-
connected.

By theorem 1, we know it is hard to compute the value
of rainbow vertex-connection number for a connected
graph G. Thus, people aim to give nice upper bounds
for this parameter, especially sharp upper bounds, ac-
cording to some parameters of the graph G.

Krivelevich and Yuster [11] first gave an upper
bound for rvc(G) according to the minimum degree δ
of G by the technique of dominating set.

Theorem 3 [11] A connected graph G with n ver-
tices has rvc(G) < 11n

δ(G) . ⊓⊔

Motivated by the method of Theorem 3, Li and
Shi derived a result, which greatly improved Theorem
3.

Theorem 4 [13] A connected graph G of order n
with minimum degree δ has rvc(G) ≤ 3n/(δ+1)+5
for δ ≥

√
n− 1 − 1, n ≥ 290, while rvc(G) ≤

4n/(δ + 1) + 5 for 16 ≤ δ ≤
√
n− 1− 2, rvc(G) ≤

4n/(δ + 1) + C(δ) for 6 ≤ δ ≤ 16 where C(δ) =

e
3 log(δ3+2δ2+3)−3(log 3−1)

δ−3 − 2, rvc(G) ≤ n/2 − 2 for
δ = 5, rvc(G) ≤ 3n/5 − 8/5 for δ = 4,rvc(G) ≤
3n/4− 2 for δ = 3. Moreover, an example shows that
when δ ≥

√
n− 1− 1, and δ = 3, 4, 5 the bounds are

seen to be tight up to additive factors.

It is also tried to look for some other better pa-
rameters to replace δ. Such a natural parameter is
σk. Observe that σk is monotonically increasing in
k. Motivated by the method of Theorem 3, Dong and
Li [8] also obtained a result analogous to Theorem 3
for the rainbow vertex-connection version according
to the degree-sum condition σ2, which is stated as the
following theorem.

Theorem 5 [8] Let G be a connected graph of order
n. Then rvc(G) ≤ 8n

σ2+2 + 8 for 2 ≤ σ2 ≤ 6 and
σ2 ≥ 28, rvc(G) ≤ 10n

σ2+2 + 8 for 7 ≤ σ2 ≤ 8 and
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16 ≤ σ2 ≤ 27, and rvc(G) ≤ 10n
σ2+2 + A(σ2) for 9 ≤

σ2 ≤ 15, where A(σ2) = 63, 41, 27, 20, 16, 13, 11,
respectively.

Dong and Li in [9] also showed a theorem for the
rainbow vertex-connection number according to the
degree-sum condition σk, which is stated as follows.

Theorem 6 [9] Let G be a connected graph of or-
der n with k independent vertices. Then rvc(G) ≤
(4k+2k2)n

σk+k + 5k if σk ≤ 7k and σk ≥ 8k; whereas

rvc(G) ≤ ( 38k
9

+2k2)n

σk+k + 5k if 7k < σk < 8k.

Nordhaus-Gaddum-type results are related to
complementary graphs. Chen, Li and Lian [6] inves-
tigated Nordhaus-Gaddum-type results. A Nordhaus-
Gaddum-type result is a (sharp) lower or upper bound
on the sum or product of the values of a parameter for
a graph and its complement. The name “Nordhaus-
Gaddum-type” is so given because it is Nordhaus and
Gaddum [18] who first established the following type
of inequalities for chromatic numbers of graphs in
1956. Chen, Li and Lian derived the following results.

Theorem 7 [6] When G and G are both connected,
then 2 ≤ rvc(G) + rvc(G) ≤ n − 1. Both the upper
and the lower bounds are best possible for all n ≥ 5.

For rainbow total-connection, Uchizawa, Aoki,
Ito, Suzuki, and Zhou [19] obtained some hardness
and algorithmic results. For a given total-coloring
c of a graph G, the Rainbow Total-Connectivity
problem is to determine whether G is rainbow total-
connected. A graph G is a cactus if every edge is
part of at most one cycle in G. Uchizawa, Aoki, Ito,
Suzuki, and Zhou gave the following theorem from
the viewpoints of diameter and graph classes, respec-
tively.

Theorem 8 [19]
(i) Rainbow Total-Connectivity is in P for graphs
of diameter 1, while is strongly NP-complete for
graphs of diameter 2.
(ii) Rainbow Total-Connectivity is strongly NP-
complete even for outerplanar graphs.
(iii) Rainbow Total-Connectivity is solvable in
polynomial time for cacti.

They also considered the FPT algorithms for rain-
bow total-connection.

Theorem 9 [19] For a total-coloring of a graph G
using k colors, one can determine whether the total-
colored graph G is rainbow total-connected in time
O(k2kmn) using O(k2kn) space, where n and m are
the numbers of vertices and edges in G, respectively.

In this paper, we will obtain some results for
these two variants of rainbow connection. For rain-
bow vertex-connection, in Section 3, we will investi-
gate the rainbow vertex-connection number of a graph
according to some structural conditions of its comple-
ment graph G (Theorems 15 and 17). In Section 4,
we will investigate graphs with large rainbow vertex-
connection numbers, that is, graphs whose rainbow
vertex-connection numbers are close to n2 (see Propo-
sition 18 and Theorem 19). In Section 5, we will con-
sider an important graph class, line graph (see Theo-
rem 20). For rainbow total-connection, in Section 6,
we will determine the precise values for rainbow total-
connection numbers of some special graph classes, in-
cluding complete graphs, trees, cycles and wheels (see
Proposition 21, Theorems 22 and 23).

2 Preliminaries
We need several basic results to obtain our con-

clusions. The following two propositions give the pre-
cise values for rainbow connection number and rain-
bow vertex-connection number of a cycle.

Proposition 10 [5] For each integer n ≥ 4,
rc(Cn) = ⌈n2 ⌉, where Cn is a cycle of length n.

Proposition 11 [12] Let G be a 2-connected graph of
order n(n ≥ 3). Then

rvc(G) ≤


0 if n = 3;
1 if n = 9;
⌈n2 ⌉ − 1 if n = 6, 7, 8, 10, 11, 12, 13, 15;
⌈n2 ⌉ if n ≥ 16 or n = 14,

and the upper bound can be achieved by the cycle Cn.

From the proposition, we know that

rvc(Cn) =


0 if n = 3;
1 if n = 4, 5;
3 if n = 9;
⌈n2 ⌉ − 1 if n = 6, 7, 8, 10, 11, 12, 13, 15;
⌈n2 ⌉ if n ≥ 16 or n = 14,

it will be useful in the sequel.

3 Upper bounds according to com-
plementary graphs

By the definition of rainbow vertex-connection
number, the following proposition is clear.

Proposition 12 For a connected graph G, rvc(G)=1
if and only if diam(G) = 2.
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Let G be a complete k-partite graph which is not
a complete graph where k ≥ 2, we have rvc(G) = 1
from the above proposition. We know if G is discon-
nected, then G is a complete graph or contains a com-
plete k-partite graph as a spanning subgraph, where
k ≥ 2. From the above discussion, we have:

Proposition 13 For a graph G, if G is disconnected,
then rvc(G) = 0 or 1.

Furthermore, we know that for a graph G, if G is
disconnected, then rvc(G) = 0 if and only if G is a
complete graph, if and only if each vertex of G is an
isolated vertex.

In the following lemma, we will investigate the
rainbow vertex-connection number of a connected
complement graph.

Lemma 14 If G is a connected graph with
diam(G) ≥ 3, then

rvc(G) =

{
1, if diam(G) ≥ 4;
1 or 2, if diam(G) = 3.

Moreover, there are graphs G such that diam(G) = 3
and rvc(G) = 2.

Proof: First of all, we see that G must be connected,
since otherwise, diam(G) ≤ 2, contradicting the con-
dition diam(G) ≥ 3. Thus, rvc(G) ≥ 1.

We choose a vertex x with eccG(x) =
diam(G) = d ≥ 3. Let N i

G(x) = {v :
distG(x, v) = i} where 0 ≤ i ≤ d. Clearly,
N0

G(x) = {x}, N1
G(x) = NG(x) as usual. We

know
∪

0≤i≤dN
i
G(x) is a vertex partition of V (G)

with |N i
G(x)| = ni. Let A =

∪
i is evenN

i
G(x),

B =
∪

i is oddN
i
G(x). For example, see Figure 1, a

graph G with diam(G) = 4.

A B

x

N 0

G(x)

N 1

G(x)

N 2

G(x)

N 3

G(x)

N 4

G(x)

G

Figure 1: A graph G with diameter 4.

We know that if d = 2k(k ≥ 2),
then A =

∪
0≤i≤d is evenN

i
G(x) and B =

∪
1≤i≤d−1 is oddN

i
G(x); if d = 2k + 1(k ≥

1), then A =
∪

0≤i≤d−1 is evenN
i
G(x) and B =∪

1≤i≤d is oddN
i
G(x). By the definition of a com-

plement graph, we know that G[A](G[B]) contains a
spanning complete k1-partite subgraph (complete k2-
partite subgraph) where k1 = ⌈d+1

2 ⌉(k2 = ⌈d2⌉). For
example, see Figure 1, G[A] contains a spanning com-
plete tripartite subgraph Kn0,n2,n4 , G[B] contains a
spanning complete bipartite subgraph Kn1,n3 .
Case 1. d ≥ 4. Now we have k1 ≥ 3, k2 ≥ 2.
We will show that diam(G) = 2 in this case. As G
is connected, the complement graph G is not a com-
plete graph, and diam(G) ≥ 2. Thus, we need to
show that for any two vertices u, v ∈ V (G), we have
distG(u, v) ≤ 2.

We will consider the following two subcases:
Subcase 1.1. u, v ∈ A or u, v ∈ B.
If u, v ∈ A, then u and v are contained in the

spanning complete k1-partite subgraph of G[A]. Thus
distG(u, v) ≤ 2. The result is also true for the sub-
case that u, v ∈ B.

Subcase 1.2. u ∈ A and v ∈ B.
If u = x, v ∈ B, then u is adjacent to all vertices

in G[B] \N1
G(x), so distG(u, v) = 1 for v ∈ G[B] \

N1
G(x). For v ∈ N1

G(x), let P := u, x3, v, where
x3 ∈ N3

G(x), clearly, distG(u, v) ≤ 2.
If u ̸= x, without loss of generality, we assume

that u ∈ N2
G(x) and v ∈ N1

G(x). Let Q := u, x4, v,
where x4 ∈ N4

G(x), clearly, distG(u, v) ≤ 2.
From the above discussion, we conclude that

diam(G) = 2, by Proposition 12, we have rvc(G) =
1.
Case 2. d = 3, that is, A = N0

G(x) ∪ N2
G(x),

B = N1
G(x) ∪ N3

G(x). Now G[A] contains a span-
ning complete bipartite subgraph Kn0,n2 . We give G
a vertex-coloring as follows: assign vertex x the color
1 and all vertices of N3

G(x) the color 2.
We choose any pair of vertices (u, v) ∈

(N i
G(x), N

j
G(x)) where i, j ∈ {0, 1, 2, 3}, without

loss of generality, we assume that i = 2, j = 1. It
is easy to see that there is a u− v path P = u, x, x3, v
whose inner vertices have distinct colors in G, where
x3 ∈ N3

G(x). Thus, distG(u, v) ≤ 3 and the
above coloring is a rainbow vertex-coloring of G, so
diam(G) ≤ 3 and 1 ≤ rvc(G) ≤ 2 in this case.

Moreover, for the case that diam(G) = 3, if there
is a vertex x0 with eccG(x0) = 3 such that there is a
vertex y0 ∈ N2

G(x0) which is adjacent to all vertices
of N1

G(x0) ∪N3
G(x0) ∪ (N2

G(x0) \ {y0}), we choose
x = x0 in the above discussion, for example, see Fig-
ure 2. We know that G is connected, and in G, y0
is not adjacent to any vertex of N1

G(x0) ∪ N3
G(x0) ∪

(N2
G(x0)\{y0}). Clearly, we have distG(y0, y1) = 3.
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x0

y0

G

N 1

G(x0) N 2

G(x0) N 3

G(x0)

y1

Figure 2: A graph G with diameter 3 whose comple-
ment has diameter 3.

As shown above diam(G) ≤ 3, we have diam(G) =
3. Thus, rvc(G) ≥ diam(G)−1 = 2, as rvc(G) ≤ 2,
we have rvc(G) = 2. ⊓⊔

As the complement graph of G is G, from Propo-
sition 13 and Lemma 14, we drive the following theo-
rem.

Theorem 15 For a graph G, we have:
(i) if G is disconnected, then rvc(G) = 0 or 1;
(ii) if diam(G) ≥ 4, then rvc(G) = 1;
(iii) if diam(G) = 3, then rvc(G) = 1 or 2;

moreover, there are graphs G such that diam(G) = 3
and rvc(G) = 2.

The above theorem investigate the rainbow con-
nection number of a graph G under the condition that
diam(G) ̸= 2.

For the case that diam(G) = 2, rvc(G) can be
very large since diam(G) may be very large. For ex-
ample, Let G = Kn \ E(Cn), where Cn is a cycle
of length n in Kn. Then G = Cn and rvc(G) ≥
diam(G)− 1 = ⌈n2 ⌉ − 1 for a sufficiently large n.

Thus, we will add a condition, that is, let G be
triangle-free. We need to show the following lemma
at first.

Lemma 16 For a triangle-free graph G with diame-
ter 2, if G is connected, then rvc(G) ≤ 3.

Proof: Since d = 2, we choose a vertex x with
eccG(x) = 2, and let A = N0

G(x) ∪ N2
G(x), B =

N1
G(x). Then G[A] contains a spanning complete bi-

partite subgraph Kn0,n2 .
Since G is triangle-free, N1

G(x) is a stable set in G

and a clique in G. There is at least one edge, denoted

by e = uv, between N1
G(x) and N2

G(x) in G, since G
is connected, where u ∈ N1

G(x) and v ∈ N2
G(x).

We now give G a vertex-coloring as follows:
color vertex x with 1, color u with 2 and color v
with 3. For any x1 ∈ N1

G(x), x2 ∈ N2
G(x), path

x1, u, v, x2 is a x1−x2 path whose inner vertices have
distinct colors. Thus, rvc(G) ≤ 3. ⊓⊔

From Theorem 15 and Lemma 16, we derive the
following theorem.

Theorem 17 For a connected graph G, if G is
triangle-free, then rvc(G) ≤ 3.

4 Graphs with large rainbow vertex-
connection numbers

Recall that a block of a connected subgraph with-
out a cut vertex. Thus, every block of a connected
graph G is either a maximal 2-connected subgraphs,
or a bridge together with its ends. Conversely, every
such subgraph is a block. Here a 2-connected block
of G is a block which is a maximal 2-connected sub-
graph of G.

We know that 0 ≤ rvc(G) ≤ n2. It is inter-
esting to study graphs with extremal rainbow vertex-
connection numbers, that is, graphs with small (large)
rainbow vertex-connection numbers. As noted before,
rvc(G) = 0 if and only if diam(G) = 1, rvc(G) = 1
if and only if diam(G) = 2. Thus, we now in-
vestigate graphs with large rainbow vertex-connection
numbers, especially n2 and derive the following re-
sult.

Proposition 18 For a connected graph G, rvc(G) =
n2 if and only if n2 = nc.

Proof: It is easy to show that, in a rainbow vertex-
coloring, any two cut vertices must obtain distinct
colors. Thus, rvc(G) ≥ nc. If n2 = nc, then
rvc(G) = n2.

Now we prove the other direction. We know each
cut vertex is an inner vertex, so nc ≤ n2. Suppose that
nc < n2, that is, there exists some inner vertex, say u,
which is not a cut vertex. Clearly, u must belong to
some 2-connected block, say Bu. We now give G a
vertex-coloring as follows: We first assign a distinct
color to each inner vertex except u, then assign any
color which has been used to the remaining vertices,
that is, u and all leaves.

We now show that G is rainbow vertex-connected
with the above coloring. For any two vertex v, w. If
v = u or w = u, then each v−w path is a path whose
inner vertices receive distinct colors. If v, w ̸= u,
then we choose any v − w path in the subgraph G \
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{u} (this path must exist since G \ {u} is connected),
clearly, it must be a path whose inner vertices receive
distinct colors. Thus, G is rainbow vertex-connected
and rvc(G) ≤ n2 − 1, this produces a contradiction.
Furthermore, we have nc = n2. ⊓⊔

We now consider the graphs with rvc(G) =
n2 − 1, but at first we need to introduce the following
two new graph classes:
G1 = {G : |V2 \ Vc| = 1 for graph G.}
G2 = {G : V2 \ Vc ⊆ B and each 2-subset of V2 \
Vc is a vertex cut of G, where B is a 2-connected
block of G.}.

In the following theorem, we will consider graphs
G with rvc(G) = n2 − 1.

Theorem 19 For a connected graph G, if rvc(G) =
n2 − 1, then G ∈ G1 ∪ G2.

Proof: For any connected graph G ∈ G1, we know
now there exists one inner vertex, say u, which is
not a cut vertex of G. As now nc = n2 − 1,
we have rvc(G) ≥ n2 − 1. We give G a vertex-
coloring as follows: We first assign each vertex of
V2 \ Vc a fresh color, then assign any old color
to the remaining vertices. It is easy to show that,
with the above vertex-coloring, G is rainbow vertex-
connected. Thus, rvc(G) ≤ n2 − 1. By the above
discussion, we know rvc(G) = n2 − 1 for the case
that G ∈ G1.

Let G be a connected graph with rvc(G) = n2−1
such that G ̸∈ G1. Then in this case, we have |V2 \
Vc| ≥ 2.

If there are two vertices of V2 \ Vc, say u1 and
v1, which belong to distinct blocks, say B1 and B2,
respectively. Clearly, both B1 and B2 are 2-connected
blocks and so G′ = G\{u1, v1} is a connected graph.
Now we give the graph G a vertex-coloring with n2−2
colors as follows: We first assign a fresh color to each
vertex of V2 except u1 and v1, then assign an old color
to the remaining vertices. We now show that, with the
above coloring, G is rainbow vertex-connected. It suf-
fices to show that for any two vertices u and v, there
is a u − v path whose internal vertices have distinct
colors. For the case that u ̸= u1, v1 and v ̸= u1, v1,
as G′ is connected, then any u− v path in G′ is a de-
sired path. The remaining cases are similar and easier.
Thus, rvc(G) ≤ n2−2, this produces a contradiction.

Now we know that for a connected graph with
rvc(G) = n2 − 1 such that G ̸∈ G1, we have
V2 \ Vc ⊆ B, where B is a 2-connected block of G.
If there exists two vertices of V2 \ Vc, say u2 and v2,
such that {u2, v2} is not a vertex cut of G, then the
graph G′′ = G \ {u2, v2} is a connected graph. Now
we give the graph G a vertex-coloring with n2 − 2

colors as follows: We first assign a fresh color to each
vertex of V2 except u2 and v2, then assign an old color
to the remaining vertices. We now show that, with the
above coloring, G is rainbow vertex-connected. It suf-
fices to show that for any two vertices u, v, there is a
u − v path whose internal vertices have distinct col-
ors. For the case that u ̸= u2, v2 and v ̸= u2, v2, as
G′′ is connected, then any u−v path in G′ is a desired
path. The remaining cases are similar and easier. And
rvc(G) ≤ n2−2, this produces a contradiction. Thus,
any 2-subset of V2 \ Vc is a vertex cut of G.

From the above discussion, we know that for a
a connected graph with rvc(G) = n2 − 1, we have
G ∈ G1 ∪ G2. ⊓⊔

5 A sharp upper bound for rainbow
vertex-connection numbers of line
graphs

In [14, 15], the authors investigated the rainbow
connection number of the line graph L(G) of a graph
G. They derived several upper bounds for rc(L(G))
in terms of some parameters of the original graph G.
In this section, we continue to investigate the rainbow
vertex-connection numbers of line graphs and give a
sharp upper bound for rvc(L(G)) in terms of rc(G).

Theorem 20 For a connected graph G, we have
rvc(L(G)) ≤ rc(G). Moreover, the bound is sharp.

Proof: Let rc(G) = k, we first assign the graph G a
rainbow k-edge-coloring c : E(G) → {1, 2, · · · , k}.
Recall that V (L(G)) = E(G), that is, there is an
one-to-one corresponding between vertex set of L(G)
and edge set of G. We assign the line graph L(G)
a k-vertex-coloring c′ such that c′(e) = c(e) where
e ∈ E(G), it suffices to show L(G) is rainbow vertex-
connected under this vertex-coloring.

We choose any two vertices e1, e2 ∈ V (L(G)),
suppose e1 = u1u2, e2 = v1v2, where ui, vi ∈ V (G)
for i ∈ {1, 2}. We know there is a rainbow (edge)
path connecting ui and vj in graph G, where i, j ∈
{1, 2}. We choose the shortest one, say P , among
these rainbow paths, and without loss of generality,
let P = a1, a2, · · · , aℓ be a rainbow u1 − v1 path
in graph G, where a1 = u1, aℓ = v1. The path P
clearly does not contain the edges e1 and e2. Re-
call that c′(aiai+1) = c(aiai+1), then the path P ′ =
e1, a1a2, · · · , aℓ−1aℓ, e2 is a e1− e2 path whose inner
vertices have distinct colors in L(G). By definition,
we know L(G) is rainbow vertex-connected under this
coloring.

For the sharpness of the bound, we can consider
the cycle Cn(n ≥ 16). By Propositions 10 and 11, we
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know that rvc(L(Cn)) = rvc(Cn) = ⌈n2 ⌉ = rc(Cn).
The conclusion now holds. ⊓⊔

6 Some rainbow total-connection
numbers of graphs

In this section, we will do some basic research for
rainbow total-connection and will derive the precise
values of rainbow total-connection numbers for some
special graph classes.

Proposition 21 For a connected graph G, we have
(i) rtc(G) = 1 if and only if G is a complete graph.
(ii) rtc(G) ̸= 2 for any noncomplete graph G.
(iii) rtc(G) = m+ n2 if and only if G is a tree.

Proof: We now verify (i). If G is a complete graph,
then the coloring that assign a color 1 to every edge
and vertex of G is a rainbow total-coloring, and so
rtc(G) = 1. If rtc(G) = 1, then diam(G) = 1,
since otherwise there exist two vertices u and v with
dist(u, v) ≥ 2. So the number of inner vertices and
edges of any u − v path must be at least three, so
rtc(G) ≥ 3. This produces a contradiction. Thus,
diam(G) = 1 and G is a complete graph.

For (ii), if rtc(G) = 2 for a connected graph G,
then G is not a complete graph, by the above discus-
sion, we have rtc(G) ≥ 3, this produces a contradic-
tion.

For (iii), let rtc(G) = m+n2, we will show that
G is a tree. Suppose first G is not a tree, then G con-
tains a cycle C : v1, v2, · · · , vk, v1, where k ≥ 3. We
give graph G a (m+n2−1)-total-coloring as follows:
We first assign each edge except v1v2 and each inner
vertex a distinct color, next we let c(v1v2) = c(v2v3).
It is easy to show that this coloring is a rainbow total-
coloring because G−v1v2 is a connected graph. Thus,
we have rtc(G) ≤ m + n2 − 1, this produces a con-
tradiction.

Next, let G be a tree. Let A(G) be the set of all
inner vertices and edges of G, we have |A(G)| =
m + n2. We assign each element of A(G) a dis-
tinct color and assign the leaves an old color. Clearly,
the above coloring is a rainbow total-coloring. Thus,
rtc(G) ≤ m+n2. Assume that rtc(G) ≤ m+n2−1.
Let c be a rainbow (m + n2 − 1)-total-coloring of
G. Thus, there are two elements of A(G) which
receive the same color, say c(a1) = c(a2) where
a1, a2 ∈ A(G). There are three cases to consider:
both a1 and a2 are inner vertices; both a1 and a2 are
edges; one of a1, a2 is an inner vertex. We only con-
sider the last case, since the remaining two cases are
similar. Without loss of generality, let a1 be an inner
vertex and a2 = uv be an edge of G. Clearly, there

is a path P : w, a1, · · · , u, v which contains both a1
and a2 in G. It is the unique w − v path in G, so
there is no rainbow total w − v path, this produces a
contradiction. ⊓⊔

We will determine the precise value for rainbow
total-connection numbers of Cn with n ≥ 10. For a
path P , we use l(P ) to denote the number of edges
and inner vertices of P . Clearly, l(P ) = 2l(P ) − 1
and we know that rtc(G) ≥ l(P ) for any path P .

Theorem 22 For n ≥ 10, the rainbow total-
connection number of the cycle Cn is

rtc(Cn) =

{
n if n ≥ 11, n ̸= 12;
n− 1 if n = 10, 12.

Proof: Assume that Cn = v1, v2, · · · , vn, vn+1 =
v1. Let E(Cn) = {ei|ei = vivi+1, 1 ≤ i ≤ n} and
A = V (Cn) ∪ E(Cn) = {ai|1 ≤ i ≤ 2n} with
a2j−1 = vj and a2j = vjvj+1 where 1 ≤ j ≤ n.

We define a total-coloring c of Cn by c(ai) =
c(ai+n) for 1 ≤ i ≤ n. It is easy to show that this col-
oring is a rainbow n-total-coloring, then rtc(Cn) ≤ n.

Next, we will show that rtc(Cn) ≥ n for the case
that n ≥ 11 and n ̸= 12. Suppose that rtc(Cn) ≤
n − 1. We give Cn a rainbow (n − 1)-total-coloring
c. As |An| = 2n, there are at least three elements of
A which have the same color. We will consider the
following four cases.

Case 1. All these three elements are edges, say e1 =
v1v2, ei = vivi+1 and ej = vjvj+1(2 ≤ i ≤ j − 1).
Clearly, one pair of vertices among {v1, vi, vj}, say v1
and vi, satisfies that dCn(v1, vi) ≤ ⌊n3 ⌋.

Subcase 1.1. The path P : v1, v2, · · · , vi−1, vi
is a v1 − vi path of length dCn(v1, vi). Then P ′ :
v1, v2, · · · , vi, vi+1 is a v1 − vi+1 path of length
dCn(v1, vi+1) ≤ ⌊n3 ⌋ + 1. As the two edges
v1v2, vivi+1 have the same color, the rainbow total
v1 − vi+1 path must be P ′′ : v1, vn, · · · , vi+2, vi+1.
Now l(P ′′) ≥ n− (⌊n3 ⌋+ 1).

If n = 3k where k ≥ 3, then l(P ′′) ≥ 3k − (k +
1) = 2k−1 and l(P ′′) ≥ 2(2k−1)−1 = 4k−3 ≥ n;
If n = 3k+1 where k ≥ 2, then l(P ′′) ≥ (3k+1)−
(k+1) = 2k and l(P ′′) ≥ 2(2k)−1 = 4k−1 ≥ n; If
n = 3k+2 where k ≥ 1, then l(P ′′) ≥ (3k+2)−(k+
1) = 2k+1 and l(P ′′) ≥ 2(2k+1)−1 = 4k+1 ≥ n.

Subcase 1.2. The path P : v1, vn, · · · , vi+1, vi is
a v1 − vi path of length dCn(v1, vi). Then the path
P ′ : v1, v2, · · · , vi is a rainbow total v1 − vi path as
the two edges vivi+1, vjvj+1 receive the same color,
and l(P ′) ≥ n− ⌊n3 ⌋.

If n = 3k where k ≥ 1, then l(P ′) ≥ n− ⌊n3 ⌋ =
3k − k = 2k and l(P ′) ≥ 2(2k) − 1 = 4k − 1 ≥ n;
If n = 3k + 1 where k ≥ 1, then l(P ′) ≥ n− ⌊n3 ⌋ =
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(3k + 1) − k = 2k + 1 and l(P ′) ≥ 2(2k + 1) −
1 = 4k + 1 ≥ n; If n = 3k + 2 where k ≥ 1, then
l(P ′) ≥ n − ⌊n3 ⌋ = (3k + 2) − k = 2k + 2 and
l(P ′) ≥ 2(2k + 2)− 1 = 4k + 3 > n.

From Subcases 1.1 and 1.2, we know that
rtc(G) ≥ l(P ′′) ≥ n for the case n ≥ 5 except that
n = 6.

Case 2. Exactly two of these three elements are edges.
Assume that this three elements are v1, ei = vivi+1

and ej = vjvj+1. Clearly, there is one pair of ver-
tices among {v1, vi, vj} such that the distance be-
tween these two vertices is at most ⌊n3 ⌋. We will con-
sider the following three subcases.

Subcase 2.1. distCn(v1, vi) ≤ ⌊n3 ⌋.
If the path P : v1, v2, · · · , vi−1, vi is the v1 − vi

path of length distCn(v1, vi), then the path P ′ :
v1, v2, · · · , vi, vi+1 is the v1 − vi+1 path of length
distCn(v1, vi+1). For the two vertices vn and vi+1.
We know that the path P ′′ : vn, v1, · · · , vi, vi+1 is not
a rainbow total vn−vi+1 path since v1 and vivi+1 have
the same color. The path P ′′′ : vn, vn−1, · · · , vi+1, vi
must be a rainbow total vn − vi path. Now we have
l(P ′′′) ≥ n − (⌊n3 ⌋ + 2). If n = 3k where k ≥ 5,
then l(P ′′′) ≥ 3k − (k + 2) = 2k − 2 and l(P ′′′) ≥
2(2k − 2) − 1 = 4k − 5 ≥ n; If n = 3k + 1 where
k ≥ 4, then l(P ′′′) ≥ (3k+1)− (k+2) = 2k−1 and
l(P ′′′) ≥ 2(2k− 1)− 1 = 4k− 3 ≥ n; If n = 3k+2
where k ≥ 3, then l(P ′′′) ≥ (3k+ 2)− (k+ 2) = 2k
and l(P ′′′) ≥ 2(2k)− 1 = 4k − 1 ≥ n.

Otherwise, the path P : v1, vn, · · · , vi+1, vi is the
v1 − vi path of length distCn(v1, vi), then the path
P ′ : v1, v2, · · · , vi−1, vi must be the rainbow total
v1 − vi path since vjvj+1 and vivi+1 receive the same
color. Now we have l(P ′) ≥ n− ⌊n3 ⌋. With a similar
argument to that of Subcase 1.2, we have l(P ′) ≥ n.

From the above discussion, we know that
rtc(G) ≥ l(P ′′) ≥ n for the case n ≥ 11 except
that n = 12.

Subcase 2.2. distCn(vi, vj) ≤ ⌊n3 ⌋.
With a similar argument to that of Case 1, we de-

rive that rtc(G) ≥ l(P ′′) = n for the case n ≥ 5
except that n = 6.

Subcase 2.3. distCn(v1, vj) ≤ ⌊n3 ⌋.
If the path P : v1, v2, · · · , vj is the v1 −

vj path of length distCn(v1, vj), then the path
P ′ : v1, v2, · · · , vj+1 must be the v1 − vj+1 path
of length distCn(v1, vj+1). And the path P ′′ :
v1, vn+1, · · · , vj+2, vj+1 must be the rainbow total
v1− vj+1 path since vivi+1 and vjvj+1 have the same
color. Now we have l(P ′′) ≥ n − (⌊n3 ⌋ + 1). With a
similar argument to that of Subcase 1.1, we obtain that
if n = 3k where k ≥ 3, then l(P ′′) ≥ n; if n = 3k+1
where k ≥ 2, then l(P ′′) ≥ n; if n = 3k + 2 where

k ≥ 1, then l(P ′′) ≥ n.
Otherwise, the path P : v1, vn, · · · , vj+1, vj is

the v1 − vj path of length distCn(v1, vj), then the
path P ′ : v2, v1, · · · , vj+1, vj must be the v2 − vj
path of length distCn(v2, vj) and the path P ′′ :
v2, v3, · · · , vj−1, vj must be the rainbow total v2 − vj
path since v1 and vjvj+1 have the same color. Sim-
ilarly, we obtain that if n = 3k where k ≥ 3, then
l(P ′′) ≥ n; if n = 3k + 1 where k ≥ 2, then
l(P ′′) ≥ n; if n = 3k + 2 where k ≥ 1, then
l(P ′′) ≥ n.

By Subcases 2.1, 2.2 and 2.3, we know that
rtc(G) ≥ l(P ′′) ≥ n for the case n ≥ 11 except
that n = 12.

Case 3. Exactly one of these three elements is an
edge. Assume that these three elements are v1, vi
and ej = vjvj+1. Clearly, there is one pair of ver-
tices among {v1, vi, vj} such that the distance be-
tween these two vertices is at most ⌊n3 ⌋. We will con-
sider the following three subcases.

Subcase 3.1. distCn(v1, vi) ≤ ⌊n3 ⌋.
If the path P : v1, v2, · · · , vi is the v1 − vi path

of length distCn(v1, vi), then the rainbow total path
between vn and vi+1 must be P ′ : vn, vn−1, · · · , vi+1

since v1 and vi have the same colors. Now we have
l(P ′) ≥ n− (⌊n3 ⌋+ 2). If n = 3k where k ≥ 5, then
l(P ′) ≥ n; If n = 3k + 1 where k ≥ 4, then l(P ′) ≥
n; If n = 3k + 2 where k ≥ 3, then l(P ′) ≥ n.

Otherwise, the path P : v1, vn, · · · , vi+1, vi is the
v1 − vi path of length distCn(v1, vi), then the path
P ′ : v2, v3, · · · , vi−1, vi must be the rainbow total
path connecting v2 and vi. Now we have l(P ′) ≥
n − (⌊n3 ⌋ + 1). Similarly, we obtain that if n = 3k

where k ≥ 3, then l(P ′′) ≥ n; if n = 3k + 1 where
k ≥ 2, then l(P ′′) ≥ n; if n = 3k + 2 where k ≥ 1,
then l(P ′′) ≥ n.

By the above discussion, we know that rtc(G) ≥
l(P ′′) = n for the case n ≥ 11 except that n = 12.

Subcase 3.2. distCn(vi, vj) ≤ ⌊n3 ⌋.
If the path P : vi, vi+1, · · · , vj is the vi −

vj path of length distCn(vi, vj), then the rainbow
total-path connecting vi−1 and vj+1 must be P ′ :
vi−1, vi−2, · · · , vj+2, vj+1, since vi and vjvj+1 have
the same color. Now we have l(P ′) ≥ n− (⌊n3 ⌋+2).
Similarly, we derive that if n = 3k where k ≥ 5,
then l(P ′) ≥ n; if n = 3k + 1 where k ≥ 4,
then l(P ′) ≥ n; if n = 3k + 2 where k ≥ 3, then
l(P ′) ≥ n.

Otherwise, the path P ′′ : vi, vi−1, · · · , vj+1, vj is
the vi−vj path of length distCn(vi, vj). Then the path
P ′′′ : vi, vi+1, · · · , vj−1, vj must be the rainbow total-
path connecting vi and vj since v1 and vjvj+1 have
the same color, and l(P ′′′) ≥ n − ⌊n3 ⌋. Similarly, we
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obtain that if n = 3k where k ≥ 1, then l(P ′) ≥ n;
if n = 3k + 1 where k ≥ 1, then l(P ′) ≥ n; if
n = 3k + 2 where k ≥ 1, then l(P ′) > n.

From the above discussion, we know that
rtc(G) ≥ l(P ′′) = n for the case n ≥ 11 except
that n = 12.

Subcase 3.3. distCn(v1, vj) ≤ ⌊n3 ⌋. The discus-
sion is similar to that of Subcase 2.3.

By Subcase 3.1, 3.2 and 3.3, we know that
rtc(G) ≥ l(P ′′) ≥ n for the case n ≥ 11 except
that n = 12.

Case 4. All these three elements are vertices. Assume
that these three elements are v1, vi and vj . Clearly,
there is one pair of vertices among {v1, vi, vj} such
that the distance between these two vertices is at most
⌊n3 ⌋. Without loss of generality, we assume that
distCn(v1, vi) ≤ ⌊n3 ⌋.

If the path P : v1, v2, · · · , vi is the v1 − vi
path of length distCn(v1, vi), then the path P ′ :
vn, vn−1, · · · , vi+2, vi+1 must be a rainbow total vn−
vi+1 path since v1 and vi have the same color. Now we
have l(P ′) ≥ n− (⌊n3 ⌋+2). Similarly, we derive that
if n = 3k where k ≥ 5, then l(P ′) ≥ n; if n = 3k+1
where k ≥ 4, then l(P ′) ≥ n; if n = 3k + 2 where
k ≥ 3, then l(P ′) ≥ n.

Otherwise, the path P ′′ : v1, vn, · · · , vi+1, vi is
the path of length distCn(v1, vi), then the path P ′′′ :
v1, v2, · · · , vi−2, vi−1 is the rainbow total v1 − vi−1

path since vi and vj have the same color. Now we
have l(P ′′′) ≥ n−(⌊n3 ⌋+1). With a similar argument
to that of Subcase 2.3, we derive that if n = 3k where
k ≥ 3, then l(P ′′′) ≥ n; if n = 3k + 1 where k ≥ 2,
then l(P ′′′) ≥ n; if n = 3k + 2 where k ≥ 1, then
l(P ′′′) ≥ n.

From the above four cases, we know that
rtc(G) ≥ l(P ′′) = n for the case n ≥ 11 except
that n = 12, this produces a contradiction. Thus,
rtc(Cn) = n for the case that n ≥ 11 and n ̸= 12.

For the case n = 12, we know that rtc(Cn) ≥
2diam(Cn) − 1 = 11. We also give C12 a rainbow-
total coloring with 11 colors as shown in Figure 3.
Thus, rtc(C12) = 11.

For the case n = 10, we know that rtc(Cn) ≥
2diam(Cn)−1 = 9. We also give C10 a rainbow-total
coloring with 9 colors as shown in Figure 3. Thus,
rtc(C10) = 9. ⊓⊔

A well-known class of graphs constructed from
cycles are the wheels. For n ≥ 3, the wheel Wn

is defined as Cn + K1, the join of Cn and K1, con-
structed by joining a new vertex to every vertex of Cn.
We will determine the precise values of rainbow total-
connection numbers of wheels.
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Figure 3: The total-colorings for C10 and C12.

Theorem 23 For n ≥ 3, the rainbow total-
connection number of the wheel Wn is

rtc(Wn) =


1 if n = 3;
3 if n = 4, 5, 6;
4 if n = 7, 8, 9;
5 if n ≥ 10.

Proof: Suppose that Wn consists of an n-cycle Cn :
v1, v2, · · · , vn, vn+1 = v1 and another vertex v joined
to every vertex of Cn. Since W3 = K4, it follows by
Proposition 21 that rtc(W3) = 1.

For 4 ≤ n ≤ 6, the wheel Wn is not complete
and rtc(Wn) ≥ 3 by Proposition 21. From Figure
4, there are rainbow total-colorings with 3 colors for
Wn. Thus, in this case, we have rtc(Wn) = 3.
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Figure 4: The total-colorings for W4, W5 and W6.

For 7 ≤ n ≤ 9, by Figure 5, there are rainbow
total-colorings with 4 colors for Wn. So rtc(Wn) ≤
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Figure 5: The total-colorings for W7, W8 and W9.

4. Suppose rtc(Wn) ≤ 3, then there is a rainbow to-
tal 3-coloring of Wn. Let c(v) = 1. If there is some
edge vvi, say vv1, with c(vv1) = c(v), then there is
no rainbow total v1 − v5 path, this produces a con-
tradiction. Thus, c(vvi) ̸= c(v) for 1 ≤ i ≤ n and
c(vvi) ∈ {2, 3}. Then there are at least four edges,
say vv1, vvi1 , vvi2 , vvi3 , with c(vv1) = c(vvi1) =
c(vvi2) = c(vvi3) where 1 < i1 < i2 < i3 ≤ n.
Clearly, there exist two elements of {1, i1, i2, i3}, say
i1 and i2, such that the distance of vi1 and vi2 in the
cycle Cn is at least 3. As now c(vvi1) = c(vvi2),
there is no rainbow total path connecting vi1 , vi2 , this
produces a contradiction. Thus, in this case, we have
rtc(Wn) = 4.

For n ≥ 10, we give Wn a total-coloring with 5
colors as follows: c(vvi) = 1 if i is odd, c(vvi) = 2
if i is even, c(e) = 3 for each e ∈ E(Cn), c(v) = 4
and c(vi) for 1 ≤ i ≤ n. It is easy to show that this
total-coloring is rainbow, we have rtc(Wn) ≤ 5. We
will show that rtc(G) ≥ 5. Suppose rtc(G) ≤ 4,
then there is a rainbow total 4-coloring of Wn. Let
c(v) = 1. If there is some edge vvi, say vv1, with
c(vv1) = c(v), then there is no rainbow total v1 − v5
path, this produces a contradiction. Thus, c(vvi) ̸=
c(v) for 1 ≤ i ≤ n and c(vvi) ∈ {2, 3, 4}. Then
there are at least four edges, say vv1, vvi1 , vvi2 , vvi3 ,
with c(vv1) = c(vvi1) = c(vvi2) = c(vvi3) where
1 < i1 < i2 < i3 ≤ n. Clearly, there exist two
elements of {1, i1, i2, i3}, say i1 and i2, such that the
distance of vi1 and vi2 in the cycle Cn is at least 3.
As now c(vvi1) = c(vvi2), there is no rainbow total
path connecting vi1 , vi2 , this produces a contradiction.
Thus, in this case, we have rtc(Wn) = 5. ⊓⊔

Acknowledgements: This research is supported by
the Scientific Research Foundation from Shaoxing
University (No. 20125033).

References:

[1] J. A. Bondy and U. S. R. Murty, Graph The-
ory, Graduate Texts in Mathematics, Vol. 244,
Springer, 2008.
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